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Bre = (= po (Re Bie — o) 4 A%/gyy, (3.5
B0z == 22 (21t — | pi | )
A= (ImEY* (1px = py®) €+ | pyl* (o — e Re £:

Py = (DeTHOT, S pjpijmf

j=—o0

®(v) is the periodic load with period p = 2n/w, acting upon the shell, and E; is a coefficient
depending on the inherent properties of the shell.

We have the following possibilities:

10, If p2<|pkl?(gooz<<0), then the branching equation always has a solution (3.5) and we

have instability near the k-th resonance (k==1,2,..) for small a, g B.
2, If pe®>|pk |2 (8ooz > 0), then, provided that A <0, the branching equation has no sol-
utions and we have stability near the k~-th resonance (k= 1,2,...) for small «a,& f. When

A >0, the equation of the neutral curve will have the form (3.5).

39, If po? = |pr® (goox = 0), and the coefficient accompanying the third power of the parameter
B is not zero, then the equation of the neutral curve is obtained from a cubic equation.

Let us consider, as an example, the function ® =1 ucos or, in which case po=1,pm=
py= W2 pr=20, k=2,3,... Near the principal resonance (k=1) when |u|<2 and A<0 (case
29) we have stability for small a, ¢ B, if on the other hand {u <2 and A >0, then the
equation of the neutral curve has the form (3.5).

In the case of higher-order resonances (k= 2,3,...) we always have A <0, and hence in~-
stability. In the case of an elastic shell we have in the same situation (p,=1, ppr=0, k=2,
3,...), the condition A =40 holds and the neutral curve is given by the equation

Pr,2 = 2mafi? k= 2,3, ..

The author thanks V,I. Yudovich for his interest and for useful discussions.
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A METHOD OF ANALYSING PLATES AND SHALLOW SHELLS"
A.I. POLUBARINOVA

A method of representing a function of two variables defined in a square ¢ = [0, n] x [0, al,
in the form of a combination of polynomials and differentiable trigonometric series is given.
Unlike the representations obtained earlier /1-3/, the present paper proposes the use of ex-
pansions in trigonometric series over the system of functions ({sin ma}, {1, cos ma}, m =1, 2, ...
complete in [0, #], and in double series over the system of functions {sin mz sin ny}, {sin ny, cos mz
sin ny}, {sin mz, sin mz cos ny}, m, n= 1,2, ... complete in o¢. Expansion in such-systems of functions
has certain advantages compared with expansions in the usual trigonometric system of sines and
cosines in [—=n,n] and the corresponding system of functions in the square [—=u,aix[—n,a].

The proposed method is used to solve problems of the theory of shells with constant coefficients
in the case of rigid clamping along a rectangular contour. The solution is obtained in the
form of trigonometric series whose coefficients are expressed in terms of the solution of an
infinite linear algebraic system of equations. Numerical values of the deflection are obtained
for the case of a shallow circular cylindrical shell.

*prikl.Matem.Mekhan.,52,3,523-527,1988
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1. Formulation and justification of the method. we shall use the concept of
evenness of the functions f(z) on [0,n] and F (zr,y) on o, and the concept of strictly defined
evenness of the functions introduced in /3/. Let us formulate a lemma on the possiblity of term~
wise differentiation of the Fourier series of the function f(z) over the systems of functions
{sin mz} and {1,cosmz}, m =1,2,... complete in [0,n]. In what follows, we shall assume that
the index [ takes the values 1,2, ...,p. The indices k and ¢ take the values 0,1,...,p and
summation over them is carried out from 0 to p.

Lemma. Let f(z) be a function of strictly defined evenness., Let continuous derivatives
RUEY exist on 10,71] and let (0) =0, f (0) = 0 (f3¥71(0) = 0). Let us also assume that the
derivative f%®*2(2*1) can be represented in the form of a sine (cosine) Fourier series. Then
the Pourier sine (cosine) series of the function f(z) can be differentiated term by term
2p 4+ 2 (2p+ 1) times.

The proof of the lemma is analogous to that of Lemma 1 in /3/.

Theorem 1. Let F (z,y) be a function with a strictly defined evenness in z and let a
partial derivative F2(0,y) (F®1(0,y)) exist. Then the following unique representation will
also exist:

F (2, p) = Dk (1), () + H (2, y) (1.
k

F(z,y)= %’, 2 (&) 0, (9) + Q (2, )

where: 1) kg (z) are any fixed polynomials of the same evenness as F(z,y in z with the follow-
ing properties: the even polynomial & (z) is of degree 2k, and the odd polynomial is of
degree 2k 4 1, d®hy (0)/dz? 5= 0; 2) g4 (z) =0, gqx (2) = hx' (2); 3) the function H (z, y) (Q (z, y)) satisfies

the condition H (0, y) = 0, He (0, y) =0 Q¥1(0, y) = 0.

Theorem 2. Let F(z,y) be a function with strictly defined evenness in y, and let a
partial derivative F,*P (z, 0) (Fﬁ”’1 (z, 0)) exist. Then a unique representation

Flz, y) =2 8,(y) 9, (2) + G (2, ) (1.2)

(F(z, =Wk @+ R, y))

c

will also exist, where 1) g () =h:{y);2)ro () =0, r. () = &' (y); 3) the function G (z,y) (R (z,y)) satisfies
the conditions G (z,0)= 0,6 (z, 0)=0 (&Y (0, y) = 0).

Let us prove Theorem 1. Theorem 2 is proved in the same manner.

We shall denote by f2 a 2i-th order derivative of the function f(z). Let us write two
linear systems of equations in unknown functions ¥y (¥), nx (¥)

FO,0) =D ) F20O, 5=k 0), (1) (1.3)
Kk k

FE10, )= e (0)n, ) (1.4)
K

Each system has, by virtue of 1) and 2}, a non-zero determinant since the matrices of
the systems are triangular, From this it follows that (1.3) yields () uniquely, and (1.4)
yields wk ). Substituting these functions into (1.1), we obtain uniquely 4H (z, y), @ {=, y). At
the same time, the functions #H (z,y), @ (z,¥), obtained in this manner will satisfy conditions
3).

From the theorems and the lemma we obtain at once the following corollary.

Corcllary. Let the function F(z, y) with strictly defined evenness in 2z, have a con-
tinuous derivative F2P#2 (F¥*), represented by its Fourier series in the system of functions’
{sin mz sin ny} ({sin ny, cos mrsin ny}) in o©. Then the following representation exists and is unique:

F(z, y).—=%hk (z)%\pnk sinny -+ 3\ H,_sinmzsinny

m,n

(F (= ¥y = D)9y (x) D\, " sinny + N Qpnsinny+ ) 0Q,,, cosmz sin ny)
13 n I m,n

The series in this representation can be differentiated term by term in =z 2p 42 (2p + 1)
times. If on the other hand F(z,y) has a derivative Fff” (Fz"“) which can be represented in
a by its Fourier series in the system of functions {sin mz sin ny} ({sin mz, sin mx cos ny}), then the
following representation exists and is unique:

F@ =W Do, sinmz+ 3 G, sin mz sinny
c m

m, n

(F (1) =3 r. ) &, sinmz 4 ) R, sinmz - 3 R, sinmzcosny
€ m m m,n
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The series in this representation can be differentiated term by term in y dp-- 2 o+ 1)
times. The indices m and n take the values 1,3,5, ... and 2,4.6,..., depending on the even-
ness of F{r, y in the corresponding argument.

2. The boundary value problem of the theory of shells. tet us consider the
boundary value problem of the theory of shells with constant coefficients in the displacements
in the square region ¢ with the boundary 1

Liwe - Lyt Lyguwe = PY (e, ), 02 1, 2, 3
wlp = vlp ™ wlp e dw/dn|p = 0

P
[
[

where d/3n 1is a derivative in the direction of the outer normal to the shell surface. Let us
expand each load P}, P2 P? in four terms of different, strictly defined evenness. We shall
seek a solution of problem (2.1}, (2.2) in the form of a sum of four problems of the form
(2.1) with boundary conditions

u(x, 0) =0, v (0, 5) =0, w(z, 0) = w0, y) =0 (2.3)
w {0, y) =0, v{zr, 0) = 0, wy (@, 0) = we (0, 1) = 0 (2.4)

{(the subscript denctes the partial derivative in the corresponding variable).

In the present case every one of the loads P, P2, P* will represent one of the four
components of the initial loads. We shall use the following expansions in series of the com-
ponent loads:

Pl {z, y) = ZPyn! sin ny + ZPpyy! cos mx sin ny
P2z, p) == EP.e* sin mx + ZPp,® sin mx cos ny

P2z, gy} = EPpyysin mezsin ay

Here and henceforth the summation in the course of solving the problem (2.1), (2.3},
(2.4) will be carried out over m and n, which take the following values:

m==1,3,5,..., 1f P3(z, y) —even in zinlo, =),
m==2,4,6,..., if P¥(z,y) — odd in «inl0, n];

with the index n changing analogously depending on the evenness of P3¥(z,y in y on [0, =}

The system (2.1} contains higher-order derivatives of the displacements: Uxxxy Uxyys Vyyysr
Vrxyr Wrxwxs Wyyyy» Wrxyy  (the operator Ly contains the fourth-order derivatives of w). Following
the results of Sect.l, we shall seek the solution of problem (2.1), (2.3) and (2.4) in the
form

u = g (x) Sy, sin ny + Doy, sin ny + Zoy,, os mz sin ay 2.

[
(52

v = r (y) L&, sin mz + by, sin maz 4+ I, sin mx cos ny
w = hy {2) Ta,® sin ny -k (x) Zag sin ny -+ Lamy, sin me sin ay
2o (¥) Zh,° sin mx -+ g {y) Zhy, sin mx + L,y sin me sin ny

g = iy, g =2 (@), rly) g

Here hy (z) = /4, h(z) = 2 {n — x)/8, 1f P3¥(x, y) 1s a function even in z in [0, xn], &y (2) == {0~ 22)/
4 h(2) = z(n—2x) (0 — 22)/24,, 1if P*(z,y) 1is a function odd in =z in [0,n). The choice of the poly-
nomials is governed by the ease with which they can be expanded in Pourier series in the
corresponding systems of functions,

The boundary conditions (2.3} yield a,°=0, b,°=0. According to the results of Sect.l,
all series in the expressions for u and v can be differentiated term by term after their
substitution into (2.1). The series in the first representation for w vcan be differentiated
term by term up to the fourth order in z and second order in y. The series in the second
representation for w can be differentiated term by term up to the fourth order in y and second
order in =

In order to determine ten groups of unknowns  Za, %n. %mns Om, Smes Omns @n, Emne Oms bmn, we have
five relations obtained after substituting (2.5} into system (2.1), four relations obtained
after substituting (2.5) into the boundary conditions (2.4), and the relation which follows
from the fact that two representations for w are identical. Let the indices i and j take,

from now on, the values 1, 2, 3. We obtain the elements Dﬁn of the matrix Dp, from the
relations

DR cos mz sin ny = Ly {cos ma sin ny) {2.6)

D2, sin mx cos ny = Ly (3in mz cos ny)

i3 e . o . .
D3 sin mx sin ny == Lig (sin mx sin ny)

Let us denote by Ai,fm the cofactors of the elements of the matrix DY

an referred to the
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determinant of the matrix Dyne Having written out the ten groups of relations menticoned
above and transforming them in an appropriate manner, we obtain the solution of problem (2.1},
(2.3) and (2.4) in the form
u{z, y) = Sty sin ny — ZSL, cos mz sin ny @7
v (2, y) = Ebne sin mz — 82 sin mz cos ny

w(z, y) = —3L8%  sin mz sin ny
Sfm" = A}lfémérm‘t + A?}rimﬁmn + A?nin’;mn
Emn:Ean“P}nn‘ ;%n:mn+P?nn> imnzmcn+nxm+P$nn
g = Figuby, + Fgnr By = ST+ g
The quantities cegn, 6’,‘“0 ((k =1,2) are expressed in terms of Ppl, p?, and the constant co-

efficients of the system (2.1). The quantities Iy, Mm, &ns ¥m represent the solution of the
infinite algebraic system of equations (the indices m, n A,’;{n, z';"m) are omitted from the system)

(D80 — o) tat D matt, & B4+ 4% = o, — T @8
m m m m
(2 A% __ &no) N + 2 nM'"um 4+ 2 (A12E -+ A”;‘n) = 5‘;’,‘0 — Z T2
kid n 7 n
S\mABE £ S mASL + B m (A 4 Ay )= — S mT?
m m m m

Sinavn, 4 Sinawe, 4 S0 (405, + A%L) = — T T

n n

- 23‘, A¥ipt

i=1

The solution of the initial problem (2.1), (2.2) represents the sum of four solutions of
problem (2.1}, (2.3), (2.4) for the component loads Pi P% P? of different, strictly defined
evenness.

The infinite system (2.8} can be solved using the reduction method /4/. In a number of
specific problems the system can be reduced to a regular form, and to justify the use of the
reduction method it is sufficient that the order of decrease of the Fourier ccefficients Pl

but not less than {/n, P%, not less than #/m, PL_, P2 P% , not less than 1/(mr}/4/.
We note that if we write D2, = D¥ =D% =D% =0, then the last two groups of equations

of system (2.8) will yield an infinite system of equationsg obtained in /3/ and corresponding
to the problem of the flexure of a rigidly clamped plate. The first two groups of equations
of system {2.8) will, in this case, yield an infinite system of equations corresponding to the
plane problem of the theory of elasticity.

The proposed method can be used to solve the problems of the theory of plates and shallow
shells for various types of boundary conditions.

3. Numerical results. ©Let us give the results of solving the problem of a shallow
circular cylindrical shell rigidly clamped along the contour, in the region
F = [0, L] X [0, ,]. The shell is described by a well-known system of equations /5/. Making the
change of variable z = a¥/l;, y = nj/l, which transfer the region & into ¢ we arrive at problem
(2.1), (2.2). Let us write y=[/(Rn), p = l/l. and set R/R =107 v =1/, =1, Here h is the
shell thickness, R is its radius and v 1s Poisson's ratio.

¥ ¥y X == /8 /4 an/8 /2
1;(2m) 0.374; 0.479 1.02; 1.20 1.52; 1.58 1.69
6:/(5m) 0,590 1.01 1,27 1.27 1.40; 1.32 1.35
1/(2m) 0.311; 0.526 1,13; 1.41 1.96; 2.06 2.30
6/(5n) | —2.07 2.02 ~0.502; 4.41 4.21; 6.00 6.58

The table gives the valuesof dimensionless deflections w for various loads and various
values of y. The deflection sought is w (z, §) = (Eh)™* (1 — v?) R%quw (z,y), E is Young's modulus, and g
is a constant load. The loads Pl = P?= 0. The upper half of the table corresponds to the
load P3=4q, and the lower half to P83 =gsinzsiny. The first (second) number in each box gives
the value of dimensionless deflection w (n/2, y) (w (2, n/2)) for the corresponding values of y (of
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The system of Egs. (2.8) is solved by the reduction method /4/. Here m and n in (2.8)

and in the sums (2.7) take the values 1,35, ... 19, The first three signs of the appropriate
solution do not change when the order of summation in (2.7} is increased as well as the
corresponding number of equations in the reduced system (2.8).

We shall also give the value of the deflection % at the centre of the shell for § - 10,

y = 1/(2r) and the load # .-y, retaining the previous values of the remaining parameters of
the shell. The deflection at the centre w(L/2, 4,2} = 3%01¢/jE is identical with the known value
/6/ of the deflection at the centre for the flexure of a beam of length {, width b and height

h,

under the load ¢b.
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