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(D(z) is the periodic load with period p = Znlo, acting upon the shell, and E, is a coefficient 

depending on the inherent properties of the shell. 

We have the following possibilities: 

lo. If PO2 < I Pk I2 b%llz < 013 then the branching equation always has a solution (3.5) and we 

have instability near the k-th resonance (kc- 1, a,...) for small a, E, B. 
2'. If po2> (ph- ~2(goo1>O), then, provided that A<O, the branching equation has no sol- 

utions and we have stability near the k-th resonance (k= 1,2,...) for small a, 6, B- When 

A>,O, the equation of the neutral curve will have the form (3.5). 

3O. If Po2 ; 1 Pk I* h, = O), and the coefficient accompanying the third power of the parameter 

fi is not zero, then the equation of the neutral curve is obtained from a cubic equation. 

Let us consider, as an example, the function @ 7: 1 7 p cos 07, in which case PO = 1, i-1’ 

P_l = p/2, Pk = 0, k= 2, a,.... Near the principal resonance (k= i) when )111<2 and A<0 (case 

2O) we have stability for small 6 & B, if on the other hand {pi<2 and A > 0 , then the 

equation of the neutral curve has the form (3.5). 

In the case of higher-order resonances (k= 2,3,...) we always have A<(). and hence in- 

stability. In the case of an elastic shell we have in the same situation (PO = 1, Pk = (1, Ii = 2, 

3, . ..). the condition A = 0 holds and the neutral curve is given by the equation 

B,,% zz 2n&"=. k = 2. 3, ._. 

The author thanks V.I. Yudovich for his interest and for useful discussions. 
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A METHOD OF ANALYSING PLATES AND SHALLOW SHELLS* 

A.I. POLUBARINOVA 

A method of representing a function of two variables defined in a square u- [O,nl xlO,nl, 
in the form of a combination of polynomials and differentiable trigonometric series is given. 

Unlike the representations obtained earlier /l-3/, the present paper proposes the use of ex- 

pansions in trigonometric series over the system of functions (sin mz), (1, cos ms), m = 1, 2, 
complete in IO. nl, and in double series over the system of functions (sin mz sin ny], {sin ny, cos mz 

sin ny), (sin mz, sin mz cos ny}. m, n= 1.2, ._. complete in 0. Expansion in such,systems of functions 
has certain advantages compared with expansions in the usual trigonometric system of sines and 

cosines in I--n,nl and the corresponding system of functions in the square I-n,nlxl-n,nl. 

The proposed method is used to solve problems of the theory of shells with constant coefficients 

in the case of rigid clamping along a rectangular contour. The solution is obtained in the 
form of trigonometric series whose coefficients are expressed in terms of the solution of an 
infinite linear algebraic system of equations. Numerical values of the deflection are obtained 

for the case of a shallow circular cylindrical shell. 

*Prikl.Matem.Mekhan.,52,3,523-527,1988 
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1. Formulation and justification of the method. We shall use the concept of 
evenness of the functions j(r) on [O, nl and F(.z,Y) on 0, and the concept of strictly defined 
evenness of the functions introduced in /3/. Let us formulate a lemma on the possiblityofterm- 
wisedifferentiation of the Fourier series of the function f(z) over the systems of functions 
(sin m.2) and (l,cos mx), m = 1, 2,. complete in lO,nl. In what follows, we shall assume that 
the index I takes the values 1.2, . . ..p. The indices k and c take the values 0, 1, ., p and 
summation over them is carried out from 0 to p. 

Lemma. Let / (4 be a function of strictly defined evenness. Let continuous derivatives 
fxZ’ (f? exist on l0, nl and let f (0) = 0,fX2' (0) = 0 ($-' (0) = 0). 
deritative fsPt2 (@'+') 

Let us also assume that the 
can be represented in the form of a sine (cosine) Fourier series. Then 

the Fourier sine (cosine) series of the function f(r) can be differentiated term by term 
2p + 2 (2p + 1) times. 

The proof of the lemma is analogous to that of Lemma 1 in /3/. 

Theorem 1. Let F (5. Y) be a function with a strictly defined evenness in z and let a 
partial derivative F$p (0, y) (F?/-l(O, y)) exist. Then the following unique representation will 
also exist: 

F(G Y) = X$(J)I~'~ (YE H(r, Y) 
4 

F(r> Y) = z qk (4 ?k (Y) + Q (5, Y) 
k 

where: 1) hk (3) are any fixed polynomials of the same evenness as 
ing properties: the even polynomial hk (x) is of degree 2k, and 
degree 2k + 1, dakhk (0)/ddk # 0. 2) q0 (2) s 

’ 

0, qk (2) = hk’ (2); 3) the function 
the condition H(0, Y)= 0, H, al (0, y) = 0 (&’ (0, y) = 0). 

(‘.‘I 

F(z. y) in z with the follow- 
the odd polynomial is of 

H 6% Y) (Q (I, Y)) satisfies 

Theorem 2. Let F(s, y) be a function with strictly defined evenness in y, and let a 
partial derivative FyZP (5, 0) (F$’ (z, 0)) exist. Then a unique representation 

F(s.u)=~g,(y)~,(r)+C(z,y) (1.2) 
e 

( 
F&Y) = z rC(y)SC(t) + R (5, Y) 

e ) 

will also exist, where 1) g, (y) = h,(y); 2) r0 (y) s 0, rc (y) = gc’ (y); 3) the function G (J, y) (R (z, y)) satisfies 
the conditions G (z,O)'= 0,GY2' (z, 0) = 0 (Rg-’ (0. y) = 0). 

Let us prove Theorem 1. Theorem 2 is proved in the same manner. 
We shall denote by f$ a 21-th order derivative of the function f(z). Let us write two 

linear systems of equations in unknown functions Pk(Y),qY (y) 

I’((‘, Y) = ~hk(0)‘bk(U)v Fx2’ (0, I/) = xhhrzl (o)‘+,(Y) 
k P 

(1.3) 

F:‘-’ (0. Y) = x q:-’ (0) qk (y) 
k 

(1.4) 

Each system has, by virtue of 1) and 2), a non-zero determinant since the matrices of 
the systems are triangular, From this it follows that (1.3) yields *Y(Y) uniquely, and (1.4) 
yields qk (Y). Substituting these functions into (l.l), we obtain uniquely H(x, y),Q(z, y). At 
the same time, the functions N(z,y),Q(r,Y), obtained in this manner will satisfy conditions 
3). 

From the theorems and the lemma we obtain at once the following corollary. 

Corollary. Let the function F(z, y) with strictly defined evenness in z, have a con- 
tinuous derivative FzP+z (PiP+‘), represented by its Fourier series in the system of functions' 
(sin *2 sin ny) ((sin ny, eos m.2 sin nY)) in CJ. Then the following representation exists and is unique: 

( k n II m,n 
F(z, Y) = xqk (~)xq,,~ sinny + SO,,, sinny+ 2 Q,,,,,cos~z siony 

The series in this representation can be differentiated term by term in z 2P + 2 (2P -t 1) 

times. If on the other hand F(z,y) has a derivative Fy(P$'+i) which can be represented in 
0 by its Fourier series in the system of functions (sin m;:sin ny) ((sin mz, sin ~ZCOS nY)), then the 
following representation exists and is unique: 

F(z, I/) = zg,(Y)z v,'sin ma + z Gmn sin mz sinny 
c m 7n.n 

(cm m 

F&Y) = x rc (Y)x E,,,” sin ms+~ Rm, sinmzf 2 R 
Tn.71 mn 

sinmzcos ny 
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The series rn thss representation can be differentiated term by term sn y ii' : 2 I,“,’ I) 

times. The indices m and II take the values i,3,5,... and ‘,4. G, , depending on thr. I'VCLI- 
ness of 1c'(s,y) in the corresponding argument. 

2. The boundary value problem of the theory of shells. Let us consider the 
boundary value problem of the theory of shells with constant coefficients in the displacements 
in the square region 1~ with the boundary 1 

/,iiU -,- I&L' i' &U Pi (I, y,, ‘ --. i, 2, 3 (2.1) 
IL Ir I’ II’ 7. (0 Ir --- dl,’ / Drc Ir --- 0 (2.2, 

where a/la* is a derivative in the direction oftheouter normal to the shell surface. Let us 
expand each load P',P", P3 in four terms of different, strictly defined evenness. we shall 
seek a solution of problem (Z.l), (2.2) in the form of a sum of four problems of the form 
(2.1) with boundary conditions 

LL (z, 0) m= u, " (0, y) 0, w (2, 0) = w (0, y) 2 0 (2.3) 

u (0, s) = U, L'(x, 0) - 0, WY (I, 0) = ro, (0, y) = 0 (2.4) 

(the subscript denotes the partial derivative in the corresponding variable). 
In the present case every one of the loads Pi. P",Pa will represent one of the four 

components of the initial loads. We shall use the following expansions in series of t.he com- 
ponent loads: 

Pi (2, y) 2 BP,,'sin ny + ZP,d cos mr sin ny 

P2 (I, Y) -~~ CP,z sin m2 + ZP,,2 sin mz Cos ny 

P3 (5, y) --- CP,, sir1 mz sin ny 

Here and henceforth the summation in the course of solving the problem (2.1), (2.3), 
(2.4) will be carried out over m and n, which take the following values: 

m -I: 1, 3, 5,. .( if P3 (2, Y) -even in 5 in [O, 3x1, 
m -. 2, 4, 6 ,. .* if P(z, y) - odd in zin[O, II]; 

with the index if changing analogously depending on the evenness of P(z,y) in y on fO> nf. 
The system (2.1) contains higher-order derivatives of the displacements: i‘T%X. %Yt/y, %‘br‘ 

%XY. ~rrxxr w&luu, QXyv (the operator LS3 contains the fourth-order derivatives of u)). Following 
the results of Sect.1, we shall seek the solution of problem (2.1), (2.3) and (2.4) in the 
form 

u = 9 (r) Xcc, .Gn ny + Za,,sin ny + Za,,, Cc18 mz sin ny (2.5) 

i: = r (y) X6,,& sin mz i_ X&,, sin mz + ES,,, sin miCos ny 

u: -7 /L@ (z) Xn,,'sin ny -i-h (l-) Zn, sin ny 3. Zn,, sin in.2 sin ny 
g, (y) Zb," sin mz -t- g (9) 26, sin mz T Zh,,,, sin mz sin ny 

g (Y) = /r (Y). 9 (+) A' (I), r (Y) R' (Y) 

Here h, (I) = n/4, h (5) = .C (n -- x)/8, if P" (x, y) is a function even in 5 in [0,x], h, (cc) -: (n -2x); 

4,h (2) = z(n - +) (n - 2z)/24, , if P(r,y) is a function odd in z in [O,n]. The choice of the poly- 
nomials is governed by the ease with which they can be expanded in Fourier series in the 
corresponding systems of functions. 

The boundary conditions (2.3) yield 0,,"~0,6,,"~0. According to the results of Sect.1, 
all series in the expressions for u and v can be differentiated term by term after their 
substitution into (2 .l) . The series in the first representation for w can be differentiated 
term by term up to the fourth order in + and second order in y. The series in the second 
representation for u) can be differentiated term by term up to the fourth order in y and second 
order in x. 

In order to determine ten groups of unknowns %~aotlrunrnr~mr &, &,,,, an, a,,, b=, b,n, we have 
five relations obtained after substituting (2.5) into system (2.1), four relations obtained 
after substituting (2.5) into the boundary conditions (2.4), and the relation which follows 
from the fact that two representations for w are identical. Let the indices i and j take, 
from now on, the values 1, 2, 3. We obtain the elements D$, of the matrix D,,, from the 
relations 

D& EOS ms sin ny = Li, (co.9 ~5 sin ny) (2.6) 

U$ sin 8n.z cos ny = L;, (sin mr 03s ny) 

D& sin 11&z sin 7zy =: Li, (sin mr sin ny) 

Let us denote by L\zn the cofactors of the elements of the matrix D$, referred to the 
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determinant of the matrix D,,. Having written out the ten groups of relations mentioned 
above and transforming them in an appropriate manner, we obtain the solution of problem (2.1), 
(2.3) and (2.4) in the form 

The quantities r&,,$,,,,((k= 1,2) are expressed in terms of P&P& and the constant co- 

efficients of the system (2.1). The quantities &,Q, &,.x,,, represent the solution of the 
infinite algebraic system of equations (the indices m,n A&,,T&,) are omitted from the system) 

mAs'&, +~(A*'tl,+ A"%,)= ai,, --XT' (2.3) 
m 

Tj = -$ 4Up’ 

i-1 

The solution of the initial problem (2.11, (2.2) represents the sum of four solutions of 
problem (2.1), (2.31, (2.41 for the component loads Pl,P', P3 of different, strictly defined 
evenness. 

The infinite system (2.8) can be solved using the reduction method /4/. In a number of 
specific problems the system can be reduced to a regular form, and to justify the use of the 
reduction method it is sufficient that the order of decrease of the Fourier coefficients P,,' 

but not less than U% P2,@, not less than i/m,P~,,,P~~,P$,, , not less than iifW/4/. 

We note that if we write LJf,= Dz&= 02,~ D~,,GO, then the last two groups of equations 

of system (2.8) will yield an infinite system of equations obtained in /3/ and corresponding 
to the problem of the flexure of a rigidly clamped plate. The first two groups of equations 
of system (2.8) will, in this case, yield an infinite system of equations corresponding to the 
plane problem of the theory of elasticity. 

The proposed method can be used to solve the problems of the theory of plates and shallow 
shells for various types of boundary conditions. 

3. Numerical results. Let us give the results of solving the problem of a shallow 
circular cylindrical shell rigidly clamped along the contour, in the region 
~5 = [0,&I x [0,&I. The shell is described by a well-known system of equations /5/. Making the 
change of variable z= z@J&,y= xy/Zy which transfer the region 5 into a we arrive at problem 
(2.1), (2.2). Let us write v = Zy/(Hn), p = 1,/6 and set h/R = fO+, Y = 'i3, B = I. Here h is the 
shell thickness, R is its radius and v is Poisson's ratio. 

Y y; x = n/s I x,/c I 3n:s I xi? 

0.374; 0.479 1.02; 1.20 1.52; 1.58 1.69 
0.590; I.Of 1.27; 1.27 1.40; 1.32 1.35 

1/(2X) 0.311; 0.526 1.13; 1.41 1.96; 2.06 2.30 
6 (W -2.07; 2.02 -0.502; 4.41 4.21; 6.00 6.58 

The table gives the valuesofdimensionless deflections w for various loads and various 
values of y. The deflection sought is w(z,y)= (E/S)-' (I-vz)R*qw(~,y), E is Young's modulus, and q 
is a constant load. The loads PI= Pz= 0. The upper half of the table corresponds to the 
load Pa= q, and the lower half to Pa =qsinz shy. The first (second) number in each box gives 
the value of dimensionless deflection ~((n/2,y)(ru(~,n/2)) for the corresponding values of y (of 
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.t) . 

The system of Eqs.(2.8) is solved by the reduction method /4/. Here m and n 11i (:i.U! 
and in the sums (2.7) take the values I, 3, 2, _. 19. The first three signs of the appropriate 
solution do not change when the order of summation in (2.7) is increased as well as the 
corresponding number of equations in the reduced system (2.8). 

We shall also give the value of the deflection u? at the centre of the shell for p IO, 
y = l/(Zn) and the load PJ lji, retaining the previous values of the remaining parameters of 
the shell. The deflection at the centre i?(yz, $,/2) =3!XXgi,/E is identical with the known value 
/6/ of the deflection at the centre for the flexure of a beam of lenqth I,, width b and height 

h, under the load yb. 
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